Nontrivial solutions of inverse discrete problems with sign-changing nonlinearities

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solutions of discrete Neumann boundary value problems with sign-changing nonlinearities

R + →R is a sign-changing function. In recent years, positive solutions of boundary value problems for difference equations have been widely studied. See [–] and the references therein. However, little work has been done that has referred to the existence of positive solutions for discrete boundary value problems with sign-changing nonlinearities (see []). Usually, in order to obtain posit...

متن کامل

Existence and multiplicity of nontrivial solutions for‎ ‎$p$-Laplacian system with nonlinearities of concave-convex type and‎ ‎sign-changing weight functions

This paper is concerned with the existence of multiple positive‎ ‎solutions for a quasilinear elliptic system involving concave-convex‎ ‎nonlinearities‎ ‎and sign-changing weight functions‎. ‎With the help of the Nehari manifold and Palais-Smale condition‎, ‎we prove that the system has at least two nontrivial positive‎ ‎solutions‎, ‎when the pair of parameters $(lambda,mu)$ belongs to a c...

متن کامل

A Positive Solution for Singular Discrete Boundary Value Problems with Sign-changing Nonlinearities

Let a,b (b > a) be nonnegative integers. We define the discrete interval [a,b] = {a,a + 1, . . . ,b}. All other intervals will carry its standard meaning, for example, [0,∞) denotes the set of nonnegative real numbers. The symbol Δ denotes the forward difference operator with step size 1, that is, Δu(k) = u(k + 1)− u(k). Furthermore for a positive m, Δm is defined as Δmu(k)= Δm−1(Δu(k)). In thi...

متن کامل

Multiple Positive Solutions for Second-order Three-point Boundary-value Problems with Sign Changing Nonlinearities

In this article, we study the second-order three-point boundaryvalue problem u′′(t) + a(t)u′(t) + f(t, u) = 0, 0 ≤ t ≤ 1, u′(0) = 0, u(1) = αu(η), where 0 < α, η < 1, a ∈ C([0, 1], (−∞, 0)) and f is allowed to change sign. We show that there exist two positive solutions by using Leggett-Williams fixed-point theorem.

متن کامل

Damped vibration problems with sign-changing nonlinearities: infinitely many periodic solutions

IN×N is theN×N identity matrix, q(t) ∈ L(R;R) is T-periodic and satisfies ∫ T  q(t)dt = , A(t) = [aij(t)] is aT-periodic symmetricN×N matrix-valued functionwith aij ∈ L∞(R;R) (∀i, j = , , . . . ,N ), B = [bij] is an antisymmetric N × N constant matrix, u = u(t) ∈ C(R,RN ), H(t,u) ∈ C(R × RN ,R) is T-periodic and Hu(t,u) denotes its gradient with respect to the u variable. In fact, there ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2019

ISSN: 1687-1847

DOI: 10.1186/s13662-019-2383-y